Saturday, September 29, 2012

Cart Launcher Lab

BIG QUESTION: How are energy and velocity related?


  • In this lab, we did an experiment and used our data points to derive an equation relating energy and velocity.
  • We used a photogate sensor to record the launched cart's velocity. The set up of our experiment is shown in the following clip: 

  • We repeated this step using different distances to pull the cart back and recorded the velocity.
  • After we had all our accurate data, we used a graphing app to graph our points. This Graph looks like this:





































  • Knowing the mass of the glider is about .4 kg, we were able to conclude that the slope of our line is 1/2 of the mass of the glider. with this information, we were able to derive an equation using Energy, Mass, and Velocity. Starting with the simple equaionof a line, y=mx+b, and the information from our graph, we derived the equation E=1/2mv^2. Since the energy we are talking about is the energy of movement, we substituted E (energy) for KE (kinetic energy).
  • The energy that we give the rubber band by pulling it back, is transferred to the cart which creates it to move. 

REAL WORLD CONNECTION:


  • The idea of movement in this lab made me think back to the example of hitting a field hockey ball that I referred to in my first post, Mass vs. Force. When I use a force over the distance of my field hockey stick, I create energy. This energy is then transferred to the ball, which makes the ball move really fast, and create a noise.




Sunday, September 23, 2012

Rubber Band Lab

BIG Questions
  1. "How can we store energy to do work for us later?"
  2. “How does the force it takes to stretch a rubber band depend on the 
    AMOUNT by which you stretch it?” 
  • In this lab, we used a series of procedures using a rubber band and an electronic force probe to derive an equation for potential energy.
  • First we stretched the rubber band a certain disrance andmeasured the force ittook to hold the rubber band in the stretched position. A picture of how this looked -->
  • From the input of distance and output of force, we came up with a data table that looked like this <--
  • The two trials were just for accuracy, and we tested the force needed to pull the rubber band when it had just one loop, and also a double loop. 
  • Then from this data, we graphed the points of the single loop data and drew a best fit line throught them. after finding the slop of our best fit line (77. 65 N/kg), we started to think of the components of our data and graph in terms of the equation of a line, y=mx+b. From this we derived Fs=kx9(+0)
  • Since we know the area under a force vs. distance graph is always the energy, we plugged in the force needed to strength the rubber band, and distance stretched into the equation A=1/2b - h. From this, we derived E= 1/2x - Fs. (we were able to do this just by substituting what our graph was labeled, for what the generic area equation called for.)  Because we know Us=1/2b - h, we can start plugging things in and we get our final equation which is Us= 1/2kx^2. These prodecures are shown below:



























  • Because of this data and these equations, we can define potential energy as stored energy that does work for us at a later time.


A Real World Connection
  • This lab made me think about all the different things that store energy that release that energy at a later time. For instance, a bow and arrow. Once in place, you pull the arrow back. Once you release the force you were aplying, the arrow uses its energy and shoots forward. 




Saturday, September 15, 2012

▽▲▼△Pyramid Lab△▼▽▲



BIG QUESTION: IS THE PRODUCT OF FORCE AND DISTANCE UNIVERSALLY CONSERVED?


  • As an introduction to this lab, we watched a video regarding the egyptian pyramids and how the egyptians were able to build the highest points of the pyramids. this video is featured here -->
  • The idea in this video of using the simple machine of an internal ramp to lift the heavy blocks is very smart, but unproven. So WE tried to prove it ourselves!
  • No we cannot prove whether the Egyptians used a ramp in our physics class, but we sure can prove that using a ramp over a shorter or longer distance will both have the same WORK because energy, or the ability to do work, is UNIVERSALLY CONSERVED. 
  • We did two trials to prove this. We used toy car, a ramp that was about 8 cm tall, and an electronic force probe to do this experiment. I represented our data in the chart below:

<-- SAME WORK!!


  • An awesome real-world connection I thought of is based at the facility I did my core project, Halleck Creek Ranch. Halleck Creek Ranch is a therapeutic horseback riding facility for people with all sorts of different disabilities. Most of the riders are not able to get out of their wheel chair, therefor they use a rap to wheel them to the height of the horses back! This ramp enables us to use a less amount of force, over a greater distance, but the same amount of energy. 



Saturday, September 8, 2012

Simple Machines: Pulley Lab


  • In this weeks lab, we made a pulley system to figure out how simple machines help us in our everyday life. But before we made anything, we measured how much force it takes to manually life a 200 gram (.2kg) brass mass 10 cm or .1 meters. To life the brass mass .1 meters, it takes 2 Newtons of force. 
  • THEN we made the double pulley machine that is in the picture below. We used a ruler to measure 10cm from the surface of the table, and an electronic force probe to get a very specific reading on how much force is exerted while using a simple machine. 

  • When we pulled the force probe down until the brass mass was 10 cm off the table, the probe read that it only took .9 Newtons! That's weird though isn't it? Just by using a simple machine, the amount of force needed was cut just about in half. How is this possible?
The Trade-Off
  • Instead of just using your hand to pick up the brass mass off of the table and using 2 Newtons, the simple machine only uses .9 Newtons but also needed 20 centimeters of string in order or get the other string that had the brass mass attached to it off of the table. 
  • SO the trade-off for using a simple machine rather than manual force is that you use less force over a greater area of distance. Meaning, if you increase the distance, you can decrease the force.
  • Taking a look at our whiteboard, we also were able to figure out tat distance and force when represented by numbers, are reciprocals or inversely proportional. 

  • Although it is not super clearly represented in our chart, the shaded portion of both squares, or their area's are the same. This shaded area in a force vs. distance graph is called the ENERGY (J). No matter wether one uses their manual force or the force of a simple machine, the two processes will both have the same energy.
  • We call the energy transferred over a distance WORK (J). 
  • Using the knowledge of our graphed date and the general equation of the area of a surface helped us derive our next big physics equation which i have illustrated below: 



  • A real-world connection of the idea of this whole experiment would be the use of curtain drawstrings. instead of applying force directly to the curtains and trying to get them perfectly to their designated sides, one may use a draw string instead (like the ones we have at SI) to make their lives easier because they wont have to use as much force. 
 <-- MORE FORCE



                                       LESS FORCE -->










SAME ENERGY!

Sunday, September 2, 2012

Mass vs. Force


  • This week in Physics class, we learned about the relationship between force and mass. Not only did the class learn about it, but we actually also wrote Newton's Second law by using our own knowledge of our data and the general equation of a line, y=mx+b. Yes, WE wrote it.
  • Using manual and electronic force probes, we measured the amount of force (N) needed to hold up a brass mass of varied masses (kg). After recording our results, we drew a graph using the data and drew a best fit line through the points. 
  • Once the graph was drawn, the relationship between mass and force became MUCH clearer. The best fit line obviously showed us that the more mass an object had, the more force the probe exerted.  
  •  I was reminded of the difference between mass and weight. The brass masses that we used in our experiment all had different masses meaning the heavier ones had more mass- aka they were "made up of more stuff." BUT the difference between that and the weight of an object is that the weight is the amount of gravity that is needed to basically keep something from floating away. If that still doesnt make sense, take a look at this more thorough video on the difference between mass and weight: 
                          

  • Knowing the general equation of a line (y=mx+b), we plugged in specific numbers according to our graph. After simplifying, we derived the equation f=mg
  •  In f=mg, "f" stands for the force of gravity. from our experiment, we learned that the force of gravity on Earth (f, Newtons) is about 10 times the mass of an object (m, kg). 
  •  The "g" in the equation stands for the gravitational constant aka the slope of any force vs. mass graph. 
  •  A connection from this experiment could be made to the sport of field hockey. Just while running on the field, a player's body is exerting a force against the force of gravity so they can move at fast speeds. i have found that the most force is exerted on the ball when a player push passes or hits the ball. 
  • As you can see in the video below, the player uses the force of his backswing which he gets from his arms and torso to hit the ball. the amount of force can be seen by the distance and power that the ball travels.